Synthesis and Reaction of (3-Phenylseleno-1-alkenyl)triphenylphosphonium Salts

Toru MINAMI, * Minoru NAKAYAMA, Taku NAKAMURA, and Yoshiharu OKADA Department of Applied Chemistry, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804

The reaction of allylic triphenylphosphonium ylides with benzeneselenenyl bromide gave (3-phenylseleno-1-alkenyl)triphenyl-phosphonium salts in good yields. Oxidation of the salts produced α , β -unsaturated aldehydes.

We have recently reported the synthesis and synthetic applications of (1-cycloalkenyl)- 1) and (cycloalkylidenemethyl)phosphonium salts. 2) In connection with our continuing interest in synthesis and utilization of unsaturated systems having the phosphonium group, we have explored the possibility of synthesis of α -seleno-substituted allylic phosphonium salts, which can be expected to be versatile intermediate reagents for the synthesis of allenyl- and/or 1,3-dienylphosphonium salts.

The reaction of a phosphonium ylide 2a, generated from a [1-(cyclohexenyl)-methyl]triphenylphosphonium salt $1a^2$) (30 mmol) and butyllithium (33 mmol) in tetrahydrofuran (THF) (40 ml) at 0 °C for 0.5 h, with benzeneselenenyl bromide (3) (36 mmol) in THF (50 ml) was carried out at -78 °C to room temperature for 8 h. After the reaction mixture was quenched by the addition of 5% hydroperchloric acid and extracted with $\mathrm{CH_2Cl_2}$, the organic layer was evaporated. The residue was recrystallized from $\mathrm{CH_2Cl_2}$ /ether to give a regiospecific γ -phenylseleno-substituted phosphonium salt, [(2-phenylselenocyclohexylidene)methyl]triphenylphosphonium

PhSe
$$Ph_3$$
 X Ph_3 X Ph_3 X Ph_3 Ph_3 X Ph_4 Ph_5 P

Scheme 1.

1a, 2a, 4a, 5a:
$$R^1$$
=H, R^2 R^3 = - $(CH_2)_4$ -

1b, 2b, 4b, 5b: R^1 R^2 = - $(CH_2)_5$ -, R^3 =H

1c, 2c, 4c, 5c: R^1 =Me, R^2 =CH₂CH₂CH=CMe₂, R^3 =H

1d, 2d, 4d, 5d: R^1 =H, R^2 =Me, R^3 =H

1742 Chemistry Letters, 1989

perchlorate $(4a)^3$ (90% yield), but no α -selenenylated phosphonium salt was produced. Similar reaction of various allylic phosphonium ylides 2b-d with 3 gave regiospecific γ -selenenylated phosphonium salts $4b-d^4$ in 90-97% yields (Table 1). These results indicate that, regardless of substituents of the starting phosphonium salts 1, selenenylation of allylic ylides 2 took place at γ -position.

Treatment of the salts 4a-d (1 mmol) in $CH_2Cl_2-H_2O$ (8 ml, 1:1) with H_2O_2 (30%, 2 mmol) at 0 °C for 10 min did not lead to the expected 1,3-dienyl- and/or allenyl-phosphonium salts,

but α , β -unsaturated aldehydes $5a-d^{5}$) were exclusively obtained in 57-80% yields (Table 1). These results demonstrate that intermediate allylic selenoxides formed by the oxidation of 4a-d with H_2O_2 underwent the [2,3]-sigmatropic

Table 1. Synthesis and Reaction of (3-Phenylseleno-1-alkenyl)triphenylphosphonium Salts 4a-d

ydes 5
d ^{a)} /%)
(75)
(80)
(57)
(61)

a) Isolated yield.

rearrangement to give selenic esters, followed by hydrolysis and elimination of the phosphonium group to produce 5a-d. Formation of aldehydes and ketones via the [2,3]-sigmatropic rearrangement has been similarly known by the oxidation of γ -chloroallyl selenides. 6

References

- T. Minami, H. Sako, T. Ikehira, T. Hanamoto, and I. Hirao, J. Org. Chem., 48, 2569 (1983); G. Saleh, T. Minami, Y. Ohshiro, and T. Agawa, Chem. Ber., 112, 355 (1979).
- 2) T. Minami, S. Shikita, S. So, M. Nakayama, and I. Yamamoto, J. Org. Chem., <u>53</u>, 2937 (1988).
- 3) $\underbrace{4a}$: mp 194 °C; 1 H NMR (CDCl₃) δ 1.20-3.00 (m, 8H, CH₂), 4.60-4.88 (br s, 1H, CHSePh), 5.84 (d, J=22 Hz, 1H, vinylic H), 7.00-7.36 (m, 5H, SePh), and 7.36-8.00 (m, 15H, phenyl H); 13 C NMR δ 21.1, 26.3, 30.0 (d, 3 Jpc=6.9 Hz), 31.9, 50.4 (d, 3 Jpc=18.9 Hz), 100.9 (d, 1 Jpc=87.7 Hz), 119.0 (d, 1 Jpc=90.3 Hz), 128.1, 129.2, 130.3 (d, 3 Jpc=12.9 Hz), 132.9 (d, 2 Jpc=11.2 Hz), 134.5, 134.8 (d, 4 Jpc=3.4 Hz), and 172.7.
- 4) 4b (X=BF₄): mp 169-171 °C; 4c: viscous oil; 4d: mp 162-163 °C. Identification for the salts 4b-d was unambiguously made from ¹H and ¹³C NMR spectral data.
- 5) Preparative thin layer chromatography (silica gel, ethyl acetate/hexane (1/7)) of crude products gave pure samples 5a-d.
- 6) See, for example: P. Lerouge and C. Paulmier, Tetrahedron Lett., <u>25</u>, 1983 (1984); H. J. Reich, J. Org. Chem., <u>40</u>, 2570 (1975); C. Paulmier, "Selenium Reagents and Intermediates in Organic Synthesis," Pergamon Press, Oxford (1986), p. 143 and references cited therein.

(Received June 30, 1989)